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HfTROEÜCTIOH 

Today much data exists with regard to the buckling of plates and 

shells. The chief conclusions of both the theoretical and experimental 
1 2 

Investigations are outlined In detail In several papers. *  Unfortunately, 

the results of experiments with circular cylindrical shells are not at 

the present time consistent with theoretical predictions. The  values of 

buckling loads determined by tests differ appreciably from the computed 

values, no matter what theory we use. 

Attempts to explain these differences in behavior have been made by 

various researchers.  Donnell attributed early failure to initial 
k 

deviations from the geometrically exact shape. Flügge calculated the 

stresses caused in the shell by the restraint to expansion provided by 

the testing machine.  Both of these workers were able to demonstrate 

that reductions in failing load would occur from these causes but they 

did not account for the large deviations in observed buckle shape froa 

those predicted by theory. 

In part, the discrepancy may be due to the fact that the buckle 

pattern observed is not of the type normally used in theoretical consider- 

ations.  It is most unusual in practice for the buckle pattern to develop 

uniformly over the whole tube.  Rather the characteristic diamonds are 

formed over psrts of the tube.  A wide field of theoreticsl exploration 

would be opened up if an attempt were made to cover localized bands of 
2 

diamond buckles. To some extent this has already been attempted by Hi tf. 

The purpose of the study reported herein was to check whether the 

influence of initial irregularities overshadows all consideration of 

elaborate waveforms, as is suggested by Cox. 

The fact that initial imperfections have a pronounced effect on the 

value of the first buckling load and the point at which it occurs is 

supported by a result published by the authors in a previous paper. 

In the study reported in this paper an electroformed nickel cylinder 

was tested under compression and the buckle load history is shown in 

Curve 1 of Fig. 1. This buckling occurred in the lower 20 percent of 

the shell.  As a result of this we were able to make a closely fitting 



heavy collar which was glued around the shell in such a manner as to 

reduce the effective length of the shell. The compression test was 

carried out again and In this case failure occurred at a higher load 

than had previously been experienced. Subsequent measurement showed 

that the buckles occurred at the most irregular positions on the cylinder. 

Thus, our experiment demonstrated among other things that the load and 

position at which buckling occurs is a function of geometric imperfection. 

The testing of cylindrical shells is a subject fraught with diffi- 

culties.  Even if a family of shells with prescribed small local variations 

in form and property could be made, a large number of tests would be re- 

quired.  The test results achieved on the family would be influen«-* d by 

many factors other than those to be Investigated.  For example, the 

machine used, the individual setup, the nature of the end fittings and so 

on, would Influence the results.  It is clear that variation due to these 

causes must be eliminated in any test series  Hence, some radically new 

approach to testing of shells was necessary if the question posed was to 

be answered experimentally. 

We reconsider the question of a family of specimens in the following 

manner:  'n' cylindrical shells manufactured by the same processes to 

Identical specification should have a random vpriation in irregularity 

unless some bias be introduced by the inspection process. These  'n' 

specimens could be placed together in a continuous line and if w^ were 

to examine them in this form, the random variation would still occur.  If 

now they were Joined together,they would produce a longer shell which 

would be characterized by the same normal distribution of Irregularity 

over its length as had previously been found in the individual members 

which had been bonded together to form the single specimen.  Thus, the 

single specimen has basically the character of a set. 

If this single specimen can be tested in an appropriate manner,tnen 

it should be possible from the one test specimen to obtain the character- 

istics of a family of cylinders.  In previous researches the authors have 

demonstrated* that when the depth to which a buckle is permitted to develop 

is restricted to the thickness of the shell, then the buckle process has no 

deleterious effect on subsequent buckle behavior of the shell. Moreover, 
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If a restriction of this kind Is made by means of some Interior object 

lying close tw the surface of the shell,It Is possible, with Increasing 

load, to produce a family of buckles which will cover the entire surface 

of the shell. Figure 2 shows a we11-developed buckle pattern on a 

cylindrical shell tested In this manner. 

It would seem reasonable under these circumstances  that for an 

Initially stress-free cylinder the number of buckles formed would be a 

measure of the geometric and material Imperfection. Additionally, the 

rate of change in number of buckles versus the applied load would follow 

a normal distribution and the average of the load at which buckles first 

were realized and the load at which the shell was completely filled with 

buckles would correspond closely to the buckling load of a perfect 

cylinder of the nominal thickness.  If the contention of Cox is correct, 

this load should have the value 0-6(Et/r) x 2nrt approximately. 

We should anticipate that the better the manufacturing techniques 

used for the shells, the more leptokurtic would the distribution curve be; 

and, of course, the poorer the technique, the more platykurtic.  (See 

Fig. 3.)  It is not unlikely, too, that with some methods of manufacture 

and with some materials a measure of skewness will be apparent. This 

would certainly be the case, for example, if in the cylinder under teat 

the stress-strain curve for the material is not Hookean over the complete 

range of stresses which result from the loading range required. 

II.  NATURE OF THE TEST SPECIMENS 

The first cylindrical shells used in this study were manufactured 

by electroforming (Fig. k).    A  thin coat of nickel was deposited on an 

accurate aluminum mandrel.  The shells were separated from the mandrels 

by rapidly cooling the mandrels with liquid nitrogen. The finished 

shells were .00U inch,  wall thickness; 2-906 inches,diameter; and 8 inches, 

length. The nickel had a Young's modulus of approximately 2k  x 10 

lbs/ins , as determined in a separate test. 



Thus, the classical buckling load of the specimens was computed 

from the formula 

P  = 0.6 — x 2nrt = 1^55 
er     r 

III. METOOD OF TEST 

The specimen was mounted in the special test fixture, shown in 

Fig. 3'     It is clear from this drawing that the fixture differs from the 

normal "encastre" type fixture. There is a central core or mandrel  The 

cylinder is in close proximity to this — the gap being  .004 inch.  The 

mandrel does not carry any direct load but restricts the depth of buckle 

which can form.  This loading fixture was mounted in a standard 60,000-lb 

Baldwin-Hamilton test machine and load was applied through a spherical 

seat loading pad in the usual manner (Fig- 6). 

IV■  RESULTS 

Load was applied to the first cylindrical shell using the lowest 

rate of application that could be obtained with the test machine. The 

specimen was continuously watch^u,and,immediately it buckled, the leading 

process was discontinued.  The shell buckled in a normal diamond pattern, 

and the buckles occurred in a small localized region  The number of 

buckles was counted and the value of load recorded  Next, the load was 

Increased by 50 lbs.  Loading was stopped and the number of buckles again 

counted.  This procedure was repeated until the buckles had almost com- 

pletely covered the surface of the shell.  The load was now removed and 

the specimen was found to have returned to its initial shape.  No sign 

of damage or permanent deformation could be found.  In Table l the number 

of buckles and the load at which the observation was made is recorded. 

The results are graphically portrayed in Figs. 7 and 8. These presenta- 

tions show that the variation of number of buckles with load closely 

approximates to the Gaussian distribution, which is characteristic of a 



random variation.  It Is seen, too,  very clearly fron Flg. 7 that when 

the change In number of buckles Is plotted against the load the re- 

sulting curve has zero slope at a point which Is very close to the 

critical buckling load estimated from the classic buckling equation. 

The extremely encouraging result obtained with the first cylindrical 

shell led us to believe that this method of Investigation was Indeed 

fruitful. As a consequence, a second shell was prepared In the same manner 

as the first.  In this case the procedure adopted was as before but with 

addition of displacement measurements. The deflection versus load history 

is shown in Fig. 9 and tabulated in Table 2. The  buckle load behavior is 

as given in Table 3 and Figs. 10 and 11.  Due to a slight failure of the 

clamping arrangements at the upper end of the cylinder the test was dis- 

continued before the shell was completely filled with buckles.  The limited 

data obtained, however, is fully consistent with that obtained on the 

previous test. There is, as one might expect however, a variation in the 

value of o which defines the distribution curve. This we attribute to 

the fact that although the method of manufacture of the two shells was 

the same the second shell was of somewhat higher quality than the first. 

A third nickel shell which had been prepared in the early stages 

of the development of the electroforming technique which was not of the 

same quality as the other two was also available. Despite its lower 

quality we thought that it would be worthwhile to test the shell,and the 

result of this work is presented In Table k  and Figs. 12 and 13.  The 

shell exhibited the same behavior as had been experienced with the other 

two but in this case the nominal distribution curve was more platykurtlc 

thsn had previously been the case. This demonstrated very forcibly to 

us that the kurtosis of the curve is certainly a measure of the irregu- 

larity of the cylinder. 

We must emphasize that a comparison of the normal distribution 

curves which resulted from the three tests shows the following important 

facts. At the low end of the load scale there Is disagreement between 

the experimental data and the distribution curves. This disagreement 

arises because the true distribution curve should result from a very long 

cylindrical shell whereas we tested a short one in which end effects 



certainly have some significance in relation to the buckle load and 

number at the ends of the cylinder. 

The modes for the three distribution curves are located at 1300, 

IU50 and 1^75 lbs.  The computed buckling load for the cylindrical shells 

Is 1^55 lbs. Thus, we see that the mode value is in no case different 

from the theoretical buckling load ty more than 10 percent  A 10 percent 

variation in this value corresponds to a variation of thickness of 5 per- 

cent or two 10-thousandths of an inch. 

V.  CONCLUSIONS 

We have shown by restricting the depth to which a buckle can develop 

that it is possible to cause buckling to occur not only at an Isolated 

point on the surface of the shell but over ail tne body  The fact that 

the variation in the number of buckles which occur as a function of load 

follows the normal distribution curve nna that the mean of the smallest 

a*id greatest buckling loads arproxtmates closely the classical critical 

buckling load is clear evidence that the random distribution of imper- 

fections which occur in cylinders Is a main contributory cause to the 

substantial scatter which is observed in cylinder tests. This point of 

view is substantiated by the observations recorded in a previous paper 

when two distinct buckling loads were obtained from tne aame cylinder by 

the simple expedient of preventing the first buckle occurring on the 

second test, l^ie closeness of the critical buckling load to the classic 

buckling load seems substantial support for the small displacement theory. 
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VII.     APPENDIX 

In this appendix we report additional work which was performed with 

a view to consolidating that reported  In the main section of the paper. 

If variations in geometry and mechanical property (which together 

constitute  irregularity)cause,as we have demonstrated them to do, statis- 

tical variation in the number of buckles observed in the corapresslve 

buckling of a cylindrical shell when the buckle depth is restricted, 

then, by an argument analogous to that already developed, we can show that 

similar phenomena should occur in the buckling of a spherical shell 

or hemispherical cap when we restrict the depth of buckle.     Similarly, 

we can deduce that a conical frustum tested under compression with 

buckle depth restriction should not have a variation of buckle number 

with load which follows the Gaussian distribution.    This arises from 

the fact that the  individual frusta which constitute the frustum tested 

do not have the  same critical buckling load. 

For the first test of the new  series a hemispherical shell was used. 

Unfortunately,  this hemispherical shell had been used previously many 

times to demonstrate buckle patterns for such shells under external 

loading.    Thus it without question was affected by the plastic conditions 

which occur at the crest of the buckles in all shells of single or double 

curvature which are repeatedly loaded without se^re restriction on the 

buckle depth permitted.    Thus,  for this specimen the pressure to cause 

collapse was not  in any way    as sociable   with the critical buckle pres- 

sure as computed by any currently existing theory.    On testing with 

buckle restriction and determining the variation of the number of buckles 

as a function of the external pressure, it was demonstrated that the anti- 

cipated Gaussian distribution occurs  In this case.    The results of this 

experiment are given in Fig.   Ik. 

The second test made was on a   conical frustum.    In this case the 

variation in the  number of buckles  as a function of load  is as given in 

Fig.   15.     It  is  seen from this curve that the variation  is definitely 

not of the Gaussian type. 
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It  is well known that cylindrical shells under combined loading 

behave differently from cylinders under pure compression.    For example, 

cylinders under compression and  internal pressure buckle at a higher 

load than cylinders In pure compression.    The limiting compressive stress« 

however, never exceeds the critical value as determined from the classic 

buckling formula 

o       = 0.6 ^- cr R 

Cylinders under compression and external pressure buckle at loads which 

are always lower than is achieved in pure compression.  Moreover, 

machined cylinders frequently are prestressed and then locked-in stresses 

are similar to those which result from external pressure. We conjecture 

therefore that a normal prestressed cylinder would behave in an analogous 

manner to a cylinder under combined external pressure and compression; 

i.e., we should anticipate that such a cylindrical shell would buckle 

in a similar manner to a stress-free shell but that there would be a 

variation in the position of the mode. To test this contention, we 

constructed a thin-walled cylindrical shell by machining from a thick 

tube.  This thin-walled shell, when removed from the mandrel on which 

It was fabricated was very noticeably oval in cross section.  It was 

forced to the circular shape and tested in the same way as before; in 

this case we obtained a statistical variation of the number of buckles 

as a function of load,but the mode value did not agree with the critical 

buckling load as determined from the classic formula (Fig. 16). 

We conclude from the auxiliary tests reported in this appendix 

that the technique reported in the main paper Is sound and the deductions 

therefrom are valid. 



TABUS 1 

Number of Buckles versus Load for Cylinder No. 1 

Load (lbs) Number of Buckles 

995 3 
1050 11 

1100 21 

1150 kO 
1200 66 

1250 95 

1300 161 

1350 22U 

IkOO 26l 

1U50 287 

10 
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TABLE 2 

Load versus Deflection for Cylinder No. 2 

Load (lbs) Deflection (10  Inches) 

0 0 

50 3 

100 7 

150 11 

200 15.3 

250 20.5 

300 25 

350 28.9 

UOO 32.2 

U50 36 

500 39.8 

550 U3.2 

600 47 

650 50.5 

700 5U.1* 

750 58.2 

800 62.2 

850 66 

900 70.2 

050 7U.1 

1000 78.8 

1050 83 

1100 88 

1150 93.6 

1200 100.1 

1225 103.5 

1250 117 

1300 129.6 

1350 146.6 

1U00 170.8 

1450 216.2 

11 



TABLE 3 

Number of Buckles versus Load for Cylinder No. 2 

Load (lbs) Number of Buckles 

1225 2 

1250 12 

1300 20 

1350 38 

lUOO 10k 

1500 169 



TABI£ k 

Number of Buckles versus Load for Cylinder No. 3 

Load (lbs) Number of Buckles 

1183 13 

1250 25 

1300 37 

1350 51 

1U00 92 

1450 134 

1500 168 

1550 200 
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Fig.   2.     Photograph  of Cylinder with Completely  Developed  Buckle  Pattern. 
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Fig. 6.  Plot of Total Number of Buckles versus Load. 
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